Abstract
Introduction: Deep brain stimulation (DBS) is effective in treating Parkinson's Disease (PD) through the use of an implantable pulse generator (IPG), which can be rechargeable (r-IPG) or non-rechargeable (nr-IPG). This study examines evidence on these devices regarding their duration, quality of life, adverse events, and costs in patients with PD.
Materials and methods: Rapid Systematic Review following Cochrane Group guidelines.
Results: Of 10 studies, 2 included only PD patients, and the others included various neurological disorders. Patients using an r-IPG from the start of treatment or as a replacement reported high satisfaction, with no significant differences compared to nr-GPI. In PD patients, the average replacement time for nr-GPI was 5.1 years, while r-GPI had a lifespan of 9 to 15 years. Although r-GPI reduces surgical interventions, it presents specific risks, such as recharging failures and missed charging sessions, while nr-GPI requires frequent replacements and is associated with a higher infection risk. The use of r-GPI showed significant long-term cost savings.
Discussion: Studies indicate that r-GPI offers benefits in satisfaction, lower complication risk, and greater long-term cost-effectiveness due to the reduced need for replacements. The specific risks of each device suggest the importance of personalized selection based on the patient’s needs and preferences.
Conclusions: nr-GPI devices have a shorter duration, while r-GPI devices have demonstrated greater long-term cost-effectiveness and higher patient satisfaction rates.
References
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. https://doi.org/10.1038/nrdp.2017.13
Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson's disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord. 2017;32(9):1264-310. https://doi.org/10.1002/mds.27115
World Health Organization. Parkinson disease [internet]. Ginebra, Suiza: WHO; 2023. [citado 15 Mar 2024]. https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-80. https://doi.org/10.1016/s1474-4422(18)30499-x
Leal Ortega R. Estimulación cerebral profunda para la enfermedad de Parkinson: criterios de selección, abordaje quirúrgico, efectos secundarios y controversias. Rev Biomed. 2021;32(2):113-23. https://doi.org/10.32776/revbiomed.v32i2.869
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17(2):75-87. https://doi.org/10.1038/s41582-020-00426-z
Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148-60. https://doi.org/10.1038/s41582-018-0128-2
Kluger BM, Klepitskaya O, Okun MS. Surgical treatment of movement disorders. Neurol Clin. 2009;27(3):633-77. https://doi.org/10.1016/j.ncl.2009.04.006
Arango Uribe GJ, Bernal Pacheco O. Trastorno de control de impulsos (TCI) en enfermedad de Parkinson. Acta Neurol Colomb. 2019;35(3):28-32. https://doi.org/10.22379/24224022247
Moreno López CL, Cerquera Cleves SC. Tratamiento de las complicaciones motoras en la enfermedad de Parkinson. Acta Neurol Colomb. 2019;35(3):19-27. https://doi.org/10.22379/24224022246
Deuschl G, Antonini A, Costa J, ?mi?owska K, Berg D, Corvol JC, et al. European Academy of Neurology/Movement Disorder Society-European Section guideline on the treatment of Parkinson’s disease: I. Invasive therapies. Eur J Neurol. 2022;29(9):2580-95. https://doi.org/10.1111/ene.15386
Anheim M, Fraix V, Chabardès S, Krack P, Benabid AL, Pollak P. Lifetime of Itrel II pulse generators for subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2007;22(16):2436-9. https://doi.org/10.1002/mds.21726
Khaleeq T, Hasegawa H, Samuel M, Ashkan K. Fixed-life or rechargeable battery for deep brain stimulation: which do patients prefer? Neuromodulation. 2019;22(4):489-92. https://doi.org/10.1111/ner.12810
Rizzi M, Messina G, Penner F, D’Ammando A, Muratorio F, Franzini A. Internal pulse generators in deep brain stimulation: rechargeable or not? World Neurosurg. 2015;84(4):1020-9. https://doi.org/10.1016/j.wneu.2015.05.028
Perez J, Gonzalez V, Cif L, Cyprien F, Chan-Seng E, Coubes P. Rechargeable or nonrechargeable deep brain stimulation in dystonia: a cost analysis. Neuromodulation. 2017;20(3):243-7. https://doi.org/10.1111/ner.12550
Garritty C, Hamel C, Trivella M, Gartlehner G, Nussbaumer-Streit B, Devane D, et al. Updated recommendations for the Cochrane rapid review methods guidance for rapid reviews of effectiveness. BMJ. 2024;384:e076335. https://doi.org/10.1136/bmj-2023-076335
Qiu X, Peng T, Lin Z, Zhu K, Wang Y, Sun B, et al. Fixed-life or rechargeable battery for deep brain stimulation: preference and satisfaction in Chinese patients with Parkinson’s disease. Front Neurol. 2021;12:668322. https://doi.org/10.3389/fneur.2021.668322
Furlanetti L, Raslan A, Khaleeq T, Hasegawa H, Tambirajoo R, Samuel M, et al. Fixed-life or rechargeable battery for deep brain stimulation: a prospective long-term study of patient’s preferences. Stereotact Funct Neurosurg. 2020;98(1):43-7. https://doi.org/10.1159/000505700
Mitchell KT, Volz M, Lee A, San Luciano M, Wang S, Starr PA, et al. Patient experience with rechargeable implantable pulse generator deep brain stimulation for movement disorders. Stereotact Funct Neurosurg. 2019;97(2):113-9. https://doi.org/10.1159/000500993
Jakobs M, Kloß M, Unterberg A, Kiening K. Rechargeable internal pulse generators as initial neurostimulators for deep brain stimulation in patients with movement disorders. Neuromodulation. 2018;21(6):604-10. https://doi.org/10.1111/ner.12748
Jakobs M, Helmers AK, Synowitz M, Slotty PJ, Anthofer JM, Schlaier JR, et al. A multicenter, open-label, controlled trial on acceptance, convenience, and complications of rechargeable internal pulse generators for deep brain stimulation: the Multi Recharge Trial. J Neurosurg. 2019;133(3):821-9. https://doi.org/10.3171/2019.5.JNS19360
Hitti FL, Vaughan KA, Ramayya AG, McShane BJ, Baltuch GH. Reduced long-term cost and increased patient satisfaction with rechargeable implantable pulse generators for deep brain stimulation. J Neurosurg. 2018;131(3):799-806. https://doi.org/10.3171/2018.4.JNS172995
Jia F, Hao H, Meng F, Guo Y, Zhang S, Zhang J, et al. Patient perspectives on the efficacy of a new kind of rechargeable deep brain stimulators. Int J Neurosci. 2016;126(11):996-1001. https://doi.org/10.3109/00207454.2015.1092145
Timmermann L, Schüpbach M, Hertel F, Wolf E, Eleopra R, Franzini A, et al. A new rechargeable device for deep brain stimulation: a prospective patient satisfaction survey. Eur Neurol. 2013;69(4):193-9. https://doi.org/10.1159/000342236
JBI. Critical Appraisal Tools [internet]. Adelaide, Australia: JBI; 2022. [citado 15 Mar 2024] https://jbi.global/critical-appraisal-tools
Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 2009;26(2):91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015;13:224. https://doi.org/10.1186/s12916-015-0465-6

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

